Abstract

AbstractBy combining the advantages of doping to change the electronic structure of molybdenum disulfide (MoS2), transition metal phosphides, and MXene, we proposed the idea of designing and preparing a new type of composite material, P‐doped MoS2/Ni2P/Ti3C2Tx heterostructures (denoted as P@MNTC), to serve as the hydrogen evolution reaction (HER) catalyst of electrochemical water splitting. The as‐prepared P@MNTC heterostructures show a significant HER activity with an overpotential of 120 mV at 10 mA cm–2 in alkaline electrolyte, with decreasing 105 and 125 mV compared with those of MoS2 and MXene, respectively. The density functional theory indicates that the P doping and synergy effect of Ti3C2Tx can enhance the activation of MoS2 and thus promote dissociation and absorption of H2O during HER process. This strategy provides a promising way to develop high‐efficiency MoS2‐ and Ti3C2Tx‐based composite catalysts for alkaline HER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.