Abstract

Wearable electronics represented by flexible displays and flexible sensors have been attracting enormous attention due to portability, miniaturization and low power consumption. Due to the dramatic increase in the number of display and sensing units, the power consumption and accuracy of the devices are facing great challenges. Active‐matrix thin‐film transistor (TFT) backplanes can effectively reduce signal crosstalk and power consumption of wearable electronics. For TFT devices, the gate insulation layer is one of key factors affecting the device performance such as device mobility, operating voltage, and bias stability, etc. High quality of solution‐processed oxide dielectric films usually are obtained at a high temperature (>400 °C), being a challenge for compatibility with flexible plastic substrates. In this work, low‐temperature annealing processes (the electric oven (EO) and deep ultraviolet (DUV) processing) of high‐k zirconia dielectric films was investigated. Compared to the thermal annealing process, the EO or DUV processing‐annealing process could obtain an approximate dielectric properties with that of thermal annealing process. The EO and DUV processing could effectively promoted the MO framework and the elimination of oxygen defects in the spin‐coating films. DUV processing ZrO2 film annealed at 150 °C exhibited an excellent properties including a large capacitance of 220 nF/cm2 and low leakage current of ~10‐7 A/cm2. These data suggest that combining low‐temperature annealing with EO and DUV irradiation holds great promise for the rapid, low‐temperature production of high‐quality and flexible oxide electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.