Abstract

The rate of production and the spatial distribution of ozone in the negative DC corona discharge are predicted with a numerical model. The results are compared to prior experimental data and to results previously presented by the authors for the positive corona discharge. In agreement with experimental data, ozone production rate in the negative corona is an order of magnitude higher than in the positive corona. The model reveals that this significant difference is due to the effect of discharge polarity on the number of energetic electrons in the corona plasma. The number of electrons is one order of magnitude greater and the chemically reactive plasma region extends beyond the ionization region in the negative corona. The paper also extends our prior modeling effort to lower velocities where the Joule heating reduces ozone production. The magnitude of the reduction is characterized by a new dimensionless parameter referred to as the electric Damkohler's third number(DaIII–e).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.