Abstract

Micro-bubble aeration is an efficient way to promote ozonation performance, but the technology is challenged by extensive energy cost. Here, a ceramic ultrafiltration membrane was used to achieve ozone micro-bubble (0–80 µm) aeration in a simple way at gaseous pressures of 0.14–0.19 MPa. Compared with milli-bubble aeration, micro-bubble aeration increased the equilibrium aquatic O3 concentrations by 1.53–3.25 times and apparent O3 transfer rates by 3.12–3.35 times at pH 5.0–8.0. Consequently, the •OH yield was 2.67–3.54 times via faster O3 transfer to the aquatic solution followed by decomposition rather than interfacial reaction. Ozone micro-bubble aeration outperformed milli-bubble aeration, with the degradation kinetics of 2,4-D being 3.08–4.36 times higher. Both O3-oxidation and •OH oxidation were important to the promotion with the contributions being 35.8%-45.9% and 54.1%-64.2%, respectively. The operational and water matric conditions influenced the oxidation performance via both O3 oxidation and •OH oxidation, which is reported for the first time. In general, the ceramic membrane offered a low-energy approach of ozone micro-bubble aeration for efficient pollutant degradation. The O3 oxidation and •OH oxidation were proportionally promoted by ozone micro-bubble due to O3 transfer enhancement. Thus, the promotive mechanism can be interpreted as the synchronous enchantment on ozone exposure and •OH exposure for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.