Abstract
We analyzed the influence of the redox global regulator Anr on the accumulation of poly(3-hydroxybutyrate) (PHB) in Pseudomonas extremaustralis. Anr regulates a set of genes in the aerobic-anaerobic transition including genes involved in nitrate reduction and arginine fermentation. An anr mutant was constructed using PCR-based strategies. The wild-type strain was able to grow in both microaerobic and anaerobic conditions using nitrate as the terminal electron acceptor while the mutant strain was unable to grow under anaerobic conditions. In bioreactor cultures, PHB content in the wild-type strain was higher in microaerobic and anaerobic cultures compared with highly aerated cultures. The mutant strain showed decreased PHB levels in both aerobic and microaerobic conditions compared with the wild-type strain. Inactivation of anr led to decreased expression of phaC and phaR genes as demonstrated in real-time RT-PCR experiments. Associated with the PHB gene region, two putative binding sites for Anr were found that, in line with the phenotype observed in bioreactor cultures, suggest a role of this regulator in PHB biosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.