Abstract

Cyanobacterial aldehyde decarbonylase (cAD) is, structurally, a member of the di-iron carboxylate family of oxygenases. We previously reported that cAD from Prochlorococcus marinus catalyzes the unusual hydrolysis of aldehydes to produce alkanes and formate in a reaction that requires an external reducing system but does not require oxygen [Das et al. (2011) Angew. Chem. 50, 7148-7152]. Here we demonstrate that cADs from divergent cyanobacterial classes, including the enzyme from N. puntiformes that was reported to be oxygen dependent, catalyze aldehyde decarbonylation at a much faster rate under anaerobic conditions and that the oxygen in formate derives from water. The very low activity (<1 turnover/h) of cAD appears to result from inhibition by the ferredoxin reducing system used in the assay and the low solubility of the substrate. Replacing ferredoxin with the electron mediator phenazine methosulfate allowed the enzyme to function with various chemical reductants, with NADH giving the highest activity. NADH is not consumed during turnover, in accord with the proposed catalytic role for the reducing system in the reaction. With octadecanal, a burst phase of product formation, k(prod) = 3.4 ± 0.5 min(-1), is observed, indicating that chemistry is not rate-determining under the conditions of the assay. With the more soluble substrate, heptanal, k(cat) = 0.17 ± 0.01 min(-1) and no burst phase is observed, suggesting that a chemical step is limiting in the reaction of this substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.