Abstract

Oxygen functionalized carbon nanocompositse (O-I@C) based on glucose and illite were obtained through mild hydrothermal process and surface oxidation. The surface properties of the prepared O-I@C were analyzed by Boehm titration, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and Specific surface area (BET). The results showed that the surfaces of the prepared O-I@C nanocomposites were functionalized with abundant oxygen-containing functional groups (OFGs). The functionalized O-I@C nanocomposites were proven to be effective adsorbents for fast removal of congo red (CR) and methylene blue (MB) from aqueous solution within 10min. It is demonstrated that the initial pH of dyes solution has an important influence on the adsorption process of both CR and MB, indicating that the OFGs created on the surfaces of the materials are responsible for the promoted adsorption ability. Furthermore, it is also proved that the adsorption isotherms of CR and MB obey the Langmuir model, with the maximum adsorption capacities of 238.40mg/g and 215.28mg/g, respectively. In addition, the used materials could be regenerated by washing with NaOH solution and reused at least four times, which exhibits potential applications as efficient and easily reusable adsorbents for the rapid removal of anionic dye CR and cationic dye MB from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.