Abstract

Oxygen fluxes were mapped at the growing apices and along mycelial hyphal segments of the ascomycete Neurospora crassa. High spatial resolution was obtained using micro-oxygen probes (2–3 μm tip diameters) and the self-referencing technique to maximize the sensitivity of oxygen flux measurements. As expected, oxygen influx was inhibited by cyanide, although oxygen influx (and hyphal growth) resumed with the induction of an alternate oxidase activity. Along hyphal segments, variations in oxygen influx were not correlated with location, near or far from septa, and varied over time along the same hyphal segment. Growing hyphae had a region of maximal oxygen influx greater than 10 μm behind the hyphal tip, the oxygen influx was correlated with hyphal growth rate. The region of maximal oxygen influx did not correspond with mitochondrial density, which is maximal (about 30% of hyphal volume) 5–10 μm behind the tip. Therefore, tip-localized mitochondria do not contribute to the respiratory requirements of the growing hypha. The tip-localized mitochondria may function in clearing calcium from the cytoplasm, although a decline in chlortetracycline flourescence after cyanide inhibition could also be due to ATP-depletion due to inhibition of actively respiring mitochondria. Alternatively, the growing tip may be the site of mitochondrial biogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.