Abstract

Solar energy can be used as "green" energy by photocatalysis for the nitrogen fixation under the atmospheric conditions compared with the traditional energy-intensive industrial production of ammonia. However, the complex kinetics and high reaction barriers greatly hinder the development of the photocatalytic N2 reduction reaction. Herein, a BiOBr/MXene-Ti3C2 composite catalyst is prepared by the simple electrostatic adsorption and self-assembly method. The as-prepared 10 wt % BiOBr/Ti3C2 exhibits the best performance for N2 fixation to NH3 by photocatalysis. The evolution rate of NH3 is up to 234.6 μmol·g-1·h-1, which is approximately 48.8 times and 52.4 times higher than those of pure BiOBr and Ti3C2, respectively. It is found that the designed double vacancies of oxygen and titanium for BiOBr/Ti3C2 composites, with the availability of localized electrons, have the ability to adsorb and activate N2, which can be efficiently reduced to NH3 by the interfacial electrons transferred from the excited BiOBr/Ti3C2 composite. In addition, the results of in situ Fourier transform infrared show the generation of NxHy species by the continuous protonation processes. Moreover, titanium vacancy (VTi) induces a strong absorption energy for nitrogen atoms on the surface of BiOBr/Ti3C2 according to the density functional theory calculations. In particular, the P-electron feedback caused by VTi could effectively promote the weakening of the N≡N triple bond and elongate the N2 bond length by ∼31.6%. This work might provide new insights into the synergistic effect of double defects and inspiration for the rational design of catalysts by defect engineering in the field of catalytic synthesis of ammonia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.