Abstract

Oxygen adsorption on an alkali metal (a.m.)-covered Ge(111) surface has been studied by means of Auger electron spectroscopy (AES), electron energy loss spectroscopy (ELS), thermal desorption (TD), and work function measurements (WF). It was found that the presence of a.m. results in enhancement of the oxygen adsorption rate. The initial values of the sticking coefficient, S 0, are exponential functions of the work function changes caused by the a.m. adsorption. It was shown that no germanium oxide phases are formed on an alkali-covered Ge surface at 300 K. The oxidation rate at high temperatures is limited by the rearrangement processes taking place in the surface GeO layer. The results obtained show that the alkali metal perturbs the GeO bond to a certain extent but no alkali oxide formation was observed at a.m. covertages under investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.