Abstract

The main putative functions of melanins in living cells, that is photoprotection and dark or light-dependent oxido-reductive activity, still requires an interpretation which takes into account the micro–mesoscopic structure of native melanin particles. It is indeed well established that a different chemical composition of melanins, even if derived from different biosynthetic pathways, has only a little influence on the biological and physical properties of the solid aggregates, the common form in which the pigment is found [P.R. Crippa et al., Chemistry of melanins, in: A. Brossi (Ed.) The Alkaloids, vol. 36, Academic Press, New York, 1989, pp. 253–323]. In the present work a model for interfacial electron transfer is proposed describing the process of light induced superoxide formation through a monoelectronic reduction of dioxygen adsorbed on melanin solid surface. This process is presumed to be dependent on the surface fractal characteristics, and its kinetics must be interpreted as a heterogeneous interfacial reaction involving light produced carriers and the adsorbed acceptor, like in colloidal inorganic semiconductors such as TiO 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.