Abstract

Synthetic molecular probes have recently been in focus for their potential use in target deconvolution, target engagement studies, and imaging. With the field expanding, new strategies to develop such tools are in high demand. While traditional conjugation techniques relying on inherently nucleophilic amino acids such as cysteine (Cys) and lysine (Lys) or pre-incorporated non-natural amino acids are still heavily used, novel methodologies for the direct and site-selective modification of peptides are attracting increasing attention. Of particular interest are Late-Stage Functionalization (LSF) approaches based on radical chemistry as they afford mild and biocompatible alternatives to transition-metal catalysis. A recent synthetic method, which leverages the unique reactivity of histidine (His), has proven to be a promising new strategy for LSF and site-selective conjugation of unprotected peptides. In this chapter, detailed step-by-step protocols depicting the C2-alkylation of His-containing peptides, the unveiling of a ketone as handle for hydrazone conjugation, and its use to site-selectively introduce a fluorophore at this residue are discussed. In addition to its application toward the synthesis of molecular probes, this methodology can be employed in peptide-based drug discovery programs, offering the possibility to rapidly explore the chemical space surrounding peptide hits. Finally, this strategy is also amenable to the preparation of novel peptide-ASO/small molecule drug conjugates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.