Abstract
Platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) and PAF-like oxidized phospholipids including 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphorylcholine (POVPC) are generated upon LDL oxidation. The aim of this study was to evaluate the question of whether POVPC can regulate migration of human bone marrow-derived stem cells (hBMSCs) and to characterize signaling mechanisms involved in the POVPC-induced cell migration. POVPC treatment resulted in dose- and time-dependent increase of hBMSCs migration. Treatment of cells with BN52021, a specific antagonist of PAF receptor, completely blocked cell migration induced by not only PAF but also POVPC. Silencing of endogenous PAF receptor expression using PAF receptor-specific small interfering RNA resulted in significant attenuation of cell migration induced by PAF or POVPC. Both PAF and POVPC induced expression of Krüppel-like factor 4 (KLF4) in hBMSCs. POVPC- or PAF-induced cell migration was abrogated by small interfering RNA-mediated depletion of endogenous KLF4. These results suggest that PAF receptor plays a pivotal role in POVPC-induced migration of human BMSCs through PAF receptor-mediated expression of KLF4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.