Abstract

The south-eastern part of Kunene Intrusive Complex (KIC), Namibia/Angola, is host to volumetrically significant, and economically important, concentrations of sodalite in the area around Swartbooisdrif, north-west Namibia. The mineralisation was formed by metasomatic exchange with carbonatites of the Epembe–Swartbooisdrif Alkaline Province. This process led to the breakdown of ore minerals initially present in various rock types of the KIC and caused the formation of new opaque phases in the sodalite-bearing metasomatites. A detailed investigation of textures and chemical compositions of the Fe–Ti oxides and sulphides has allowed evaluation of the complex ore-forming processes related to the polyphase magmatic and metasomatic history of the sodalite deposit. The predominant opaque phases in the various rock types of the KIC are ilmenite and (titano)magnetite, which are highly concentrated in the so-called magnetite plugs. It is clear from the textural evidence that most of the ilmenite and (titano)magnetite, although of orthomagmatic origin, recrystallised under subsolidus conditions. Conformably, their respective chemical compositions and phase relations represented in the system FeO–1/2Fe2O3–TiO2 point to re-equilibration at temperatures below 600 °C. Ilmenite and (titano)magnetite were affected by later deformation and decomposed by various reactions, related to, or outlasting, the metasomatic process. Oxidation of ilmenite led to the formation of symplectitic aggregates of rutile and secondary magnetite. Carbonatisation of the Fe–Ti oxides produced rutile and the siderite and rhodochrosite components in ankerite. Pyrite, in part together with rutile and secondary magnetite, was formed by sulphidation of the Fe–Ti oxides. Conspicuous aggregates of granular or lamellar intergrowths of pyrite with hematite and/or magnetite are interpreted as products of contemporaneous sulphidation and oxidation of former igneous pyrrhotite. Rarely observed pyrrhotite with pentlandite lamellae is probably not an igneous relic, but was formed during the metasomatic event. Smaller amounts of chalcopyrite, bornite, digenite–chalcocite, galena, ferroan siegenite, millerite and polydymite testify to different cooling stages during or after metasomatism. Applying the phase relations in the simplified system Fe–Co–Ni–S–O, we were able to reconstruct a semi-quantitative T–f(S2)–f(O2) path for the ore-forming processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.