Abstract

Oxidative stress may produce high level of reactive oxygen species (ROS) following cell exposure to endogenous and exogenous factors. Recent experiments implicate oxidative stress as playing an essential role in cytotoxicity of many materials. The aim of this study was to measure intracellular malondialdehyde (MDA), advanced oxidation protein product (AOPP) levels, and superoxide dismutase (SOD) activities of L929 fibroblasts cultured on PDLLA, polyethylene glycol (PEG), or ethylenediamine (EDA) grafted PDLLA by plasma polymerization method. Cell proliferation on these scaffolds was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The study showed that MDA, AOPP levels, and SOD activities in L929 fibroblast cells cultured on all scaffolds were significantly different compared to the control group and each other. The highest MDA (0.42 ± 0.76nmol/mg protein), AOPP (14.99 ± 4.67nmol/mg protein) levels, and SOD activities (7.49 ± 3.74U/mg protein) were observed in cells cultured on non-modified scaffolds; meanwhile, the most cell proliferation was obtained in EDA-modified scaffolds (MDA 0.15 ± 0.14nmol/mg protein, AOPP 13.12 ± 3.86nmol/mg protein, SOD 4.82 ± 2.64 U/mg protein). According to our finding, EDA- or PEG-modified scaffolds are potentially useful as suitable biomaterials in tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.