Abstract

In many vertebrate cells exposure to ultraviolet light lead to a dramatic increase in the cellular levels of the tumour suppressor protein p53, followed by a biological response of either growth arrest or programmed cell death. Ultraviolet light can be absorbed directly by cellular macromolecules, leading to photochemical modification of DNA and proteins. Additionally, it also causes free radical formation, resulting in oxidative stress. Whereas ultraviolet light and ionizing radiation both induce DNA lesions which trigger an activation of the p53 pathway, the magnitude of the p53 response elicited by ionizing radiation is comparatively low. Following irradiation with ultraviolet light two populations of p53-reactive cells are induced: a population accumulating high levels of p53 protein and a population with comparatively low levels of p53, similar in magnitude to the p53 response following ionizing radiation. Pretreatment of cells with N-acetylcysteine, an agent known to counteract oxidative stress, attenuates the cellular p53 response to ultraviolet light by reducing the number of cells with high p53 levels but does not affect the response to ionizing radiation. We demonstrate that N-acetylcysteine pretreatment does not prevent the inflicted DNA damage and therefore conclude that oxidative stress is a causative agent in the ultraviolet light activation of the p53 pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.