Abstract
AbstractThis study utilized γ‐linolenic acid (18∶3n−6; GLA)‐rich borage oil (BO) and evening primrose oil (EPO) for the synthesis of structured lipids (SL) and compared the oxidative stability of the products with those of unmodified BO and EPO as controls. Immobilized Novozym 435 lipase from Candida antarctica was used as the biocatalyst for SL production. BO or EPO eas enzymatically modified with docosahexaenoic acid (22∶6n−3; DHA), as the acyl donor, to produce SI. The SI were characterized and their oxidative stabilities evaluated. Among the oils examined, SL gave rise to higher quantities (P≤0.05) of conjugated dienes, TBARS, and headspace volatiles as compared to their unmodified counterparts. Results indicated that modified oils were less stable than their unmodified counterparts. The double bond index (DBI) and methylene bridge index (MBI) of oils decreased (P<0.05) during oxidation in the more unsaturated oils. An attempt was made to correlate various parameters of oxidation with DBI and MBI of oils; correlation coefficients (−r) were within the range of 0.574–0.973. This suggests that indicators such as DBI and MBI can reflect oxidative stability of oils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.