Abstract

Oxidative stress is a key mechanism by which ambient particulate matter induces adverse health effects. Most studies have focused on the oxidative potential (OP) of water-soluble constituents, while there has been limited work on the OP of solvent-extractable organic matter (EOM OP). In this study, the EOM OP of ambient total suspended particulate (TSP) from Bangkok, Thailand, was determined using the dithiothreitol (DTT) assay. Positive matrix factorization (PMF), combined with chemical analysis of molecular markers, was employed to apportion the contributions of various emission sources to EOM OP. The volume-normalized OP initially increased with organic carbon (OC) concentration and plateaued gradually, while the mass-normalized OP fitted well with OC concentration using a power function. Fossil fuel combustion (62%) and plastic waste burning (23%) were the major contributors to EOM OP, while biomass burning demonstrated only a limited contribution. EOM OP correlated well with each group of polycyclic aromatic hydrocarbons (PAHs), suggesting that secondary formation of quinones associated with fossil fuel combustion and plastic waste burning could be an important pathway of TSP toxicity. This study underscores the importance of considering different emission sources when evaluating potential health impacts and the implementation of air pollution regulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.