Abstract
Oxidative degradation of fensulfothion, a model organophosphorus compound, has been investigated by pulse radiolysis and H2O2/UV photolysis. A nearly complete transformation of fensulfothion was observed within 4min of irradiation. Very little Total Organic Carbon (TOC) reduction was obtained at this time scale. When the product studies at this stage were conducted using LC–MS/MS analyses, nearly 20 transformation products were obtained. The entire products were identified as from the reaction of OH with fensulfothion or with some of its initially transformed products. Nearly 80% reduction in TOC was observed when photolysis was conducted using higher concentrations of H2O2 at longer time scale. A reaction rate constant (bimolecular) of 1.10×1010dm3mol−1s−1 was obtained for the reaction of OH with fensulfothion using pulse radiolysis technique. The transient absorption spectrum obtained from the reaction of OH has a maximum at 280nm and a weak, broad maximum around 500nm along with a small shoulder around 340nm. The intermediate spectrum is assigned to the radical cation of fensulfothion (3) and the hydroxyl radical adducts (1 and 2). This assignment is supported by the intermediate spectrum (λmax at 280nm) from the reaction of sulfate radical anion (SO4-) (k2=3.20×109dm3mol−1s−1) which is a one electron oxidant. It is thus demonstrated that the combination of both pulse radiolysis and the product estimation using LC–MS/MS is ideal in probing the complete mechanism which is very important in the mineralization reactions using Advanced Oxidation Processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.