Abstract

Human exposure to mercury (Hg) is primary associated with its organic form, methylmercury (MeHg), through the ingestion of contaminated seafood. However, Hg contamination is also positively correlated with the number of dental restorations, total surface of amalgam, and organic mercury concentration in the saliva. Among the cells existing in the oral cavity, human periodontal ligament fibroblast (hPLF) cells are important cells responsible for the production of matrix and extracellular collagen, besides sustentation, renewal, repair, and tissue regeneration. In this way, the present study is aimed at investigating the potential oxidative effects caused by MeHg on hPLF. Firstly, we analyzed the cytotoxic effects of MeHg (general metabolism status, cell viability, and mercury accumulation) followed by the parameters related to oxidative stress (total antioxidant capacity, GSH levels, and DNA damage). Our results demonstrated that MeHg toxicity increased in accordance with the rise of MeHg concentration in the exposure solutions (1-7 μM) causing 100% of cell death at 7 μM MeHg exposure. The general metabolism status was firstly affected by 2 μM MeHg exposure (43.8 ± 1.7%), while a significant decrease of cell viability has arisen significantly only at 3 μM MeHg exposure (68.7 ± 1.4%). The ratio among these two analyses (named fold change) demonstrated viable hPLF with compromised cellular machinery along with the range of MeHg exposure. Subsequently, two distinct MeHg concentrations (0.3 and 3 μM) were chosen based on LC50 value (4.2 μM). hPLF exposed to these two MeHg concentrations showed an intracellular Hg accumulation as a linear-type saturation curve indicating that metal accumulated diffusively in the cells, typical for metal organic forms such as methyl. The levels of total GSH decreased 50% at exposure to 3 μM MeHg when compared to control. Finally, no alteration in the DNA integrity was observed at 0.3 μM MeHg exposure, but 3 μM MeHg caused significant damage. In conclusion, it was observed that MeHg exposure affected the general metabolism status of hPLF with no necessary decrease on the cell death. Additionally, although the oxidative imbalance in the hPLF was confirmed only at 3 μM MeHg through the increase of total GSH level and DNA damage, the lower concentration of MeHg used (0.3 μM) requires attention since the intracellular mercury accumulation may be toxic at chronic exposures.

Highlights

  • Organization (WHO), mercury is released in thousands of tons into the environment mainly through uncontrolled gold-mining activities

  • General metabolism status in human periodontal ligament fibroblast (hPLF) exposed to 1 μM MeHg was similar to control but dropped significantly at 2 μM MeHg exposure (43:8 ± 1:7%), declining until 6 μM MeHg (5:9 ± 1:7%) and being not observed at 7 μM MeHg treatment (Figure 1(a))

  • Cell viability decreased significantly in the hPLF exposed to 3 μM treatment (68:7 ± 1:4%)

Read more

Summary

Introduction

Organization (WHO), mercury is released in thousands of tons into the environment mainly through uncontrolled gold-mining activities. A variety of in vitro and in vivo models have shown that MeHg binds to total glutathione (GSH). This protein is the substrate for glutathione S-transferase (GST) and plays a key role in cellular detoxification of xenobiotics and in excessive production of oxygen species. The decreased level of total GSH or the ratio between GSH/GSSG results in oxidative stress and evidences an important molecular mechanism in MeHg-induced toxicity [4, 5]. Oxidative stress is associated with mitochondrial dysfunction [6] and alterations on membrane permeability and macromolecule structure (DNA, protein, and lipids), due to their high affinity for sulphydryl groups and thiols [7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.