Abstract

Fluorination is a reaction that is useful in improving the chemical stability and changing the binding affinity of biologically active compounds. The protocol described here can be used to replace aliphatic, C(sp(3))-H hydrogen in small molecules with fluorine. Notably, isolated methylene groups and unactivated benzylic sites are accessible. The method uses readily available manganese porphyrin and manganese salen catalysts and various fluoride ion reagents, including silver fluoride (AgF), tetrabutylammonium fluoride and triethylamine trihydrofluoride (TREAT·HF), as the source of fluorine. Typically, the reactions afford 50-70% yield of mono-fluorinated products in one step. Two representative examples, the fragrance component celestolide and the nonsteroidal anti-inflammatory drug ibuprofen, are described; they produced useful isolated quantities (250-300 mg, ~50% yield) of fluorinated material over periods of 1-8 h. The procedures are performed in a typical fume hood using ordinary laboratory glassware. No special precautions to rigorously exclude water are required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.