Abstract

Higher alkanes (cyclohexane, n-pentane, n-heptane, methylbutane, 2- and 3-methylpentanes, 3-methylhexane, cis- and trans-decalins) are oxidized at 20 °C by H2O2 in air in acetonitrile (or nitromethane) solution in the presence of the manganese(IV) salt [L2Mn2O3](PF6)2 (L = 1,4,7-trimethyl-1,4-7-triazacyclononane) as the catalyst. An obligatory component of the reaction mixture is acetic acid. Turnover numbers attain 3300 after 2 h, the yield of oxygenated products is 46% based on the alkane. The oxidation affords initially the corresponding alkyl hydroperoxide as the predominant product, however later these compounds decompose to produce the corresponding ketones and alcohols. Regio- and bond selectivities of the reaction are high: C(1) : C(2) : C(3) : C(4) ≈ 1 : 40 : 35 : 35 and 1° : 2° : 3° is 1 : (15–40) : (180–300). The reaction with both isomers of decalin gives (after treatment with PPh3) alcohols hydroxylated in the tertiary positions with the cis/trans ratio of ∼ 2 in the case of cis-decalin, and of ∼ 30 in the case of trans-decalin (i.e. in the latter case the reaction is stereospecific). Light alkanes (methane, ethane, propane, normal butane and isobutane) can be also easily oxidized by the same reagent in acetonitrile solution, the conditions being very mild: low pressure (1–7 bar of the alkane) and low temperature (−22 to +27 °C). Catalyst turnover numbers attain 3100, the yield of oxygenated products is 22% based on the alkane. The yields of oxygenates are higher at low temperatures. The ratio of products formed (hydroperoxide: ketone: alcohol) depends very strongly on the conditions of the reaction and especially on the catalyst concentration (at higher catalyst concentration the ketone is predominantly produced).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.