Abstract

4-(Dimethylamino)phenol (DMAP) is a potent cyanide antidote which forms many equivalents of ferrihemoglobin in vivo and in vitro. During this process formation of phenoxyl radicals was observed which are reduced by ferrohemoglobin, thereby sustaining a catalytic cycle of ferrihemoglobin formation, or which disproportionate to give the quinone imine of DMAP. In the presence of thiols, e.g., glutathione (GSH), formation of 4-(dimethylamino)-2-(glutathion-S-yl)phenol (2-GS-DMAP), 4-(dimethylamino)-2,6-bis(glutathion-S-yl)phenol (2,6-bis-GS-DMAP), and 4-(dimethylamino)-2,3,6-tris(glutathion-S-yl)phenol (2,3,6-tris-GS-DMAP) was observed. While the trisubstituted glutathione conjugate is a stable end product, 2-GS-DMAP and 2,6-bis-GS-DMAP were still reactive and produced ferrihemoglobin. It is concluded that formation of polysubstituted DMAP thioethers is a result of sequential oxidation/addition reactions with quinoid intermediates. Formation of glutathione disulfide (GSSG) was minimal during the interaction of oxidized DMAP or 2-GS-DMAP with glutathione but became significant when oxidized 2,6-bis-GS-DMAP reacted with GSH. Thus it is conceivable that the bulky glutathione substituents in 2,6-bis-GS-DMAP render the addition of a third GSH molecule to the quinone imine derivative more difficult, and other reactions may get a chance. The reaction mechanism of GSSG formation has not been fully resolved, but a radical pathway mechanism involving thiyl radicals is proposed. Oxidation and addition reactions were also observed in the absence of oxygen when ferrihemoglobin served as oxidant. In the presence of oxygen, however, GSSG formation was increased, Partly due to hydrogen peroxide formation, partly due to an additional trapping reaction of the glutathione disulfide radical anion.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.