Abstract
Oxidation of melatonin was followed by measuring chemiluminescence emitted during pyrrole ring cleavage, a process leading to the main oxidation product of this indoleamine, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK). Radical reactions of melatonin were studied in two variants of a moderately alkaline (pH 8) H2O2 system, one of which contained hemin as a catalyst. In both systems, light emission from melatonin oxidation lasted several hours. Time courses and turnover rates depended on the presence or absence of hemin; the catalyst enhanced light emission many-fold. In the two reaction systems, the presence of hydrogen carbonate (HCO)(3)(-) enhanced chemiluminescence by more than 10-fold, indicating scavenging of carbonate radicals. In the presence of 10% dimethylsulfoxide (DMSO) or 1 m mannitol, HCO(3)(-)-dependent as well as independent light emissions were only partially inhibited. With regard to the stimulatory effect of HCO(3)(-), this implies a formation of carbonate radicals (CO)(3)(-) independent of hydroxyl (OH) radicals, presumably involving superoxide anions abundantly present in the system. Tiron, a scavenger of superoxide anions, strongly and almost instantaneously inhibited chemiluminescence, in accordance to the requirement of this reactive oxygen species for AFMK formation and its involvement in -radical formation. Melatonin's capability of scavenging CO(3)(-) may contribute to its protective potency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.