Abstract
Flavin-mediated electron transfer is an important pathway for Fe(III) reduction by dissimilatory iron-reducing bacteria. Although the mechanisms and kinetics of Fe(III) reduction by reduced flavins have been widely studied, the reaction between Fe(II) and oxidized flavins is rarely investigated. Results of this study show that under anoxic conditions, Fe(II) can be oxidized by the oxidized forms of riboflavin (RBF) and flavin mononucleotide (FMN) at pH 7-9. For instance, at pH 9, 73% of 17.8 μM Fe(II) was oxidized by 10 μM RBF within 20 min. Both the rate and extent of oxidation increased with increasing concentrations of oxidized flavins and increasing solution pH. Thermodynamic calculations and kinetic analyses implied that the oxidation of Fe(II) proceeded predominantly via the autodecomposition of Fe2+-RBF- and Fe2+-FMN- complexes, along with minor contributions from direct oxidation of Fe(II) by flavins and flavin radicals. Our findings suggest that the reoxidation of Fe(II) by oxidized flavins may be a rate-controlling factor in microbial Fe(III) reduction via flavin-mediated electron transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.