Abstract

A series of iron-containing zeolites ZSM-5 with different iron loadings (0.5, 2 and 4 wt%) calcined at 900 °C and characterized by a high crystallinity were studied. The zeolites were tested in reactions of CO, methane, propylene and toluene oxidation by molecular oxygen in vacuum setup, as well as in flow reactor system using a model reaction mixture simulating automobile exhaust gases. Reactivities of components of the model reaction mixture change in the series: C3H6 > CO > C6H5CH3 > CH4. There were two stages of the hydrocarbon oxidation: they were oxidized first to CO and then reoxidized to CO2. Temperatures higher than 350 °C were required for methane oxidation to produce CO and CO2, any other products of methane partial oxidation being not found. High activity of Fe–ZSM-5 catalysts towards propylene and toluene oxidation was found to be determined by zeolite porous structure and capability to adsorb rapidly mentioned hydrocarbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.