Abstract
Formyl (CHO) is an important adsorbate and a key intermediate in industrial processes such as water gas shift (WGS), Fischer–Tropsch synthesis (FTS) and catalytic hydrocarbon combustion reactions. Density functional theory (DFT) with the PBE functional was used to calculate the adsorption, reaction and activation energies of formyl oxidation and dissociation on Ni(111), Ni(110) and Ni(100) surfaces. The results show that these energies are sensitive to the surface structure. The dissociation barrier for CHO → CH + O (FTS process) is higher than that for CHO → CO + H (catalytic combustion) on all three surfaces. This means that the dissociation to CO and H is kinetically favored. The dissociation reaction rate decreases in the order Ni(110) > Ni(111) > Ni(100) for both dissociation reactions. The formation of formate (CHO + O → HCOO), which is included in one of the pathways for the WGS reaction, has lowest activation energy on the Ni(111) surface, and the energy increases in the order Ni(111) < Ni(110) < Ni(100). However, the reaction rate at 463 K, which is a typical temperature for industrial processes that involve these reactions, is at least five orders of magnitude higher for the CHO → CO + H reaction than for the other two reactions, irrespective of the crystallographic structure of the Ni surface. This means that Ni surfaces studied here are better catalysts for this reaction. The results also show that the WGS reaction on a Ni catalyst does not primarily occur via the formate pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.