Abstract

The oxidation and creep behaviors of textured Ti2AlC and Ti3AlC2 ceramics were characterized. The oxidation behavior of the two materials, which was studied in air at temperatures ranging from1000 to 1300 °C, was observed to be anisotropic and the materials exhibited a better oxidation resistance along a direction transverse to the c-axis. The correlation between the overall parabolic rate constant and oxidation temperature of both textured materials was characterized, providing new insights into the oxidation kinetics. The results indicate that the texturing has a negligible influence on the creep behavior in the assessed temperature range of 1000−1200 °C in air, for the applied stresses ranging from 40 to 80 MPa. In this stress regime, the creep behavior of textured Ti2AlC and Ti3AlC2 appears to be controlled by grain boundary sliding. This behavior can be rationalized based on a model for superplastic deformation, indicating pure-shear motion under stationary conditions accommodated by lattice or grain-boundary diffusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.