Abstract

Previous work on this topic, [Weitzner, Phys. Plasmas 11, 866 (2004)], applicable in a system with toroidal symmetry, is extended to the case of a non-symmetric background equilibrium state. Maxwell's equations with the cold plasma dielectric tensor are used to represent the plasma-electromagnetic wave interaction. Away from the mode conversion region, geometrical optics adequately characterizes the wave propagation. A new, simpler derivation of the wave equations in the mode conversion region is given. Aside from one very special case in which a general plasma equilibrium behaves like a stratified medium, the previous results apply and highly effective mode conversion is found. The matching of the mode conversion solution to the geometrical optics solution, not previously examined, is discussed. A relatively weak condition on the perpendicular wave number near the resonance layer is found. Provided that the perpendicular wave number is small, it tends to zero at the mode conversion layer and the solutions match effectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.