Abstract

In recent years, research communities have shown significant interest in solar energy systems and their cooling. While using cells to generate power, cooling systems are often used for solar cells (SCs) to enhance their efficiency and lifespan. However, during this conversion process, they can generate heat. This heat can affect the performance of solar cells in both advantageous and detrimental ways. Cooling cells and coordinating their use are vital to energy efficiency and longevity, which can help save energy, reduce energy costs, and achieve global emission targets. The primary objective of this review is to provide a thorough and comparative analysis of recent developments in solar cell cooling. In addition, the research discussed here reviews and compares various cooling systems that can be used to improve cell performance, including active cooling and passive cooling. The outcomes reveal that phase-change materials (PCMs) help address critical economic goals, such as reducing the cost of PV degradation, while enhancing the lifespan of solar cells and improving their efficiency, reliability, and quality. Active PCMs offer precise control, while passive PCMs are simpler and more efficient in terms of energy use, but they offer less control over temperature. Moreover, an innovative review of advanced cooling methods is presented, highlighting their potential to improve the efficiency of solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.