Abstract

In this paper, a survey of the most relevant advances in natural neighbour Galerkin methods is presented. In these methods (also known as natural element methods, NEM), the Sibson and the Laplace (non-Sibsonian) interpolation schemes are used as trial and test functions in a Galerkin procedure. Natural neighbour-based methods have certain unique features among the wide family of so-called meshless methods: a well-defined and robust approximation with no user-defined parameters on non-uniform grids, and the ability to exactly impose essential (Dirichlet) boundary conditions are particularly noteworthy. A comprehensive review of the method is conducted, including a description of the Sibson and the Laplace interpolants in two- and three-dimensions. Application of the NEM to linear and non-linear problems in solid as well as fluid mechanics is studied. Other issues that are pertinent to the vast majority of meshless methods, such as numerical quadrature, imposing essential boundary conditions, and the handling of secondary variables are also addressed. The paper is concluded with some benchmark computations that demonstrate the accuracy and the key advantages of this numerical method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.