Abstract
Using etale cohomology, we define a birational invariant for varieties in characteristic $p$ that serves as an obstruction to uniruledness - a variant on an obstruction to unirationality due to Ekedahl. We apply this to $\overline{M}_{1,n}$ and show that $\overline{M}_{1,n}$ is not uniruled in characteristic $p$ as long as $n \geq p \geq 11$. To do this, we use Deligne's description of the etale cohomology of $\overline{M}_{1,n}$ and apply the theory of congruences between modular forms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.