Abstract

Diffuse fluorescence tomography (DFT) methods using the full time-resolved (TR) data have been demonstrated to substantially improve the spatial resolution and quantitative accuracy of reconstructed images. However, these methods usually suffer from low practical feasibility because of the influence of the system impulse response function (IRF) and the trade-off between the used data time-resolution and the required signal-to-noise ratio (SNR). We present a full TR approach that combines an IRF-calibrated full TR Born normalization and an overlap-delaying time-gate scheme for attaining high SNR without sacrificing the TR information content. The approach is validated with full TR data from phantom experiments for its better performances in the spatial resolution and reconstruction fidelity compared to the traditional DFT methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.