Abstract

A simple adiabatic model of the switch-on and turn-on spread in an optically triggered SiC thyristor has been developed. The model makes it possible to evaluate the overheating of the structure with consideration for the switched current Imax, the rate of current increase dI/dt, the power/energy of the UV light source used for switching, the area initially switched-on by light, and the switch-on time constant τ of the thyristor. The applicability of the adiabatic approximation to evaluation of the device overheating is substantiated. It is shown that the instantaneous maximum power density is approximately inversely proportional to the area of the initially switched-on portion of the thyristor. The estimates obtained demonstrate that, to preclude the inadmissible overheating of the structure, the maximum current density during switch-on, jmax, should not exceed ∼(2–3) × 104 A cm−2. With jmax ≈ Imax/πr02 ≈ U0/πrr02Rl taken for estimation, it is possible to estimate the radius of the optical window r0 for a given voltage U0 at which the structure is switched on and a chosen load resistance Rl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.