Abstract

The purpose of this study was to identify the role of phospholipase D (PLD) isozymes in Bcl-2 expression. Overexpression of PLD1 or PLD2 increased Bcl-2 expression and phosphatidic acid (PA), the product of PLDs, also upregulated Bcl-2 expression. Treatment with PA activated the phospholipase A2 (PLA2)/Gi/ERK1/2, RhoA/Rho-associated kinase (ROCK)/p38 MAPK, and Rac1/p38 MAPK pathways. PA-induced phosphorylation of ERK1/2 was attenuated by a PLA2 inhibitor (mepacrine) and, a Gi protein inhibitor (pertussis toxin, PTX). On the other hand, p38 MAPK phosphorylation was attenuated by a dominant negative Rac1 and a specific Rho-kinase inhibitor (Y-27632). These results suggest that PLA2/Gi acts at the upstream of ERK1/2, while Rac1 and RhoA/ROCK act upstream of p38 MAPK. We next, tried to determine which transcription factor is involved in PLD-related Bcl-2 expression. When signal transducer and activator of transcription 3 (STAT3) activity was blocked by a STAT3 specific siRNA, PA-induced Bcl-2 expression was remarkably decreased, suggesting that STAT3 is an essential transcription factor linking PLD to Bcl-2 upregulation. Taken together, these findings indicate that PLD acts as an important regulator in Bcl-2 expression by activating STAT3 involving the phosphorylation of Ser727 through the PLA2/Gi/ERK1/2, RhoA/ROCK/p38 MAPK, and Rac1/p38 MAPK pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.