Abstract

High Mobility Group AT-hook 2 (HMGA2) is a chromatin modifier and its overexpression has been found in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Level of Hmga2 expression is fine-tuned by Lin28b-Let-7 axis and Polycomb Repressive Complex 2, in which deletion of Ezh2 leads to activation of Hmga2 expression in hematopoietic stem cells. To elucidate the mechanisms by which the overexpression of HMGA2 helps transformation of stem cells harboring a driver mutation of TET2, we generated an Hmga2-expressing Tet2-deficient mouse model showing the progressive phenotypes of MDS and AML. The overexpression of Hmga2 remodeled the transcriptional program of Tet2-deficient stem and progenitor cells, leading to the impaired differentiation of myeloid cells. Furthermore, Hmga2 was bound to a proximal region of Igf2bp2 oncogene, and activated its transcription, leading to enhancing self-renewal of Tet2-deficient stem cells that was suppressed by inhibition of the DNA binding of Hmga2. These combinatory effects on the transcriptional program and cellular function were not redundant to those in Tet2-deficient cells. The present results elucidate that Hmga2 targets key oncogenic pathways during the transformation and highlight the Hmga2-Igf2bp2 axis as a potential target for therapeutic intervention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.