Abstract
Previously, we found an ethylene-responsive transcriptional co-activator, which was significantly induced by heat stress (HS) in both thermo-sensitive and thermo-tolerant wheat. The corresponding ORF was isolated from wheat, and named TaMBF1c (Multiprotein Bridging Factor1c). The deduced amino acid sequence revealed the presence of conserved MBF1 and helix-turn-helix domains at the N- and C-terminus, respectively, which were highly similar to rice ERTCA (Ethylene Response Transcriptional Co-Activator) and Arabidopsis MBF1c. The promoter region of TaMBF1c contained three heat shock elements (HSEs) and other stress-responsive elements. There was no detectable mRNA of TaMBF1c under control conditions, but the transcript was rapidly and significantly induced by heat stress not only at the seedling stage, but also at the flowering stage. It was also slightly induced by drought and H2O2 stresses, as well as by application of the ethylene synthesis precursor ACC, but not, however, by circadian rhythm, salt, ABA or MeJA treatments. Under normal temperatures, TaMBF1c-eGFP protein showed predominant nuclear localization with some levels of cytosol localization in the bombarded onion epidermal cells, but it was mainly detected in the nucleus with almost no eGFP signals in cytosol when the bombarded onion cells were cultured under high temperature conditions. Overexpression of TaMBF1c in yeast imparted tolerance to heat stress compared to cells expressing the vector alone. Most importantly, transgenic rice plants engineered to overexpress TaMBF1c showed higher thermotolerance than control plants at both seedling and reproductive stages. In addition, transcript levels of six Heat Shock Protein and two Trehalose Phosphate Synthase genes were higher in TaMBF1c transgenic lines than in wild-type rice upon heat treatment. Collectively, the present data suggest that TaMBF1c plays a pivotal role in plant thermotolerance and holds promising possibilities for improving heat tolerance in crops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.