Abstract

Cytoplasmic dynein is a minus-end directed microtubule-based motor. Using a molecular genetic approach, we have begun to dissect structure-function relationships of dynein in the cellular slime mold Dictyostelium. Expression of a carboxy-terminal 380-kDa fragment of the heavy chain produces a protein that approximates the size and shape of the globular, mechanochemical head of dynein. This polypeptide cosediments with microtubules in an ATP-sensitive fashion and undergoes a UV-vanadate cleavage reaction. The deleted amino-terminal region appears to participate in dimerization of the native protein and in binding the intermediate and light chains. Overexpression of the 380-kDa carboxy-terminal construct in Dictyostelium produces a distinct phenotype in which the interphase radial microtubule array appears collapsed. In many cells, the microtubules form loose bundles that are whorled around the nucleus. Similar expression of a central 107-kDa fragment of the heavy chain does not produce this result. The data presented here suggest that dynein may participate in maintaining the spatial pattern of the interphase microtubule network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.