Abstract

Increased expression of leaf or seed ADPglucose pyrophosphorylase activity (AGPase) has been shown to increase plant growth. However, no study has directly compared AGPase overexpression in leaves and/or seeds. In the present study, transgenic rice overexpressing AGPase in leaves or in seeds were crossed, resulting in four F2:3 homozygous genotypes with AGPase overexpression in leaves, seeds, both leaves and seeds, or neither tissue. The impact of AGPase overexpression in these genotypic groups was examined at the metabolic, transcriptomic, and plant growth levels. Leaf-specific AGPase overexpression increased flag leaf starch up to five times that of the wild type (WT) whereas overexpression of AGPase in both leaves and seeds conferred the greatest productivity advantages. Relative to the WT, AGPase overexpression in both leaves and seeds increased plant biomass and panicle number by 61% and 51%, respectively while leaf-specific AGPase overexpression alone only increased plant biomass and panicle number by 24 and 32% respectively. Extraction and analysis of RNA and leaf-specific metabolites demonstrated that carbon metabolism was broadly increased by AGPase overexpression in seeds and leaves. These findings indicate that stimulation of whole-plant growth and productivity can be best achieved by upregulation of starch biosynthesis in both leaves and seeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.