Abstract

The enzyme tryptophan decarboxylase (TDC) (EC 4.1.1.28) catalyses a key step in the biosynthesis of terpenoid indole alkaloids in C. roseus by converting tryptophan into tryptamine. Hardly any tdc mRNA could be detected in hormone-independent callus and cell suspension cultures transformed by the oncogenic T-DNA of Agrobacterium tumefaciens. Supply of tryptamine may therefore represent a limiting factor in the biosynthesis of alkaloids by such cultures. To investigate this possibility, chimaeric gene constructs, in which a tdc cDNA is linked in the sense or antisense orientation to the cauliflower mosaic virus 35S promoter and terminator, were introduced in C. roseus cells by infecting seedlings with an oncogenic A. tumefaciens strain. In the resulting crown gall tumour calluses harbouring the tdc sense construct, an increased TDC protein level, TDC activity and tryptamine content but no significant increase in terpenoid indole alkaloid production were observed compared to empty-vector-transformed tumour calluses. In tumour calluses containing the tdc antisense construct, decreased levels of TDC activity were measured. Factors which might be responsible for the lack in increased terpenoid indole alkaloid production in the tdc cDNA overexpressing crown gall calluses are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.