Abstract

Adenovirus (Ad)-based vectors offer several benefits showing their potential for use in a variety of vaccine applications. Recombinant Ad-based vaccines possess potent immunogenic potential, capable of generating humoral and cellular immune responses to a variety of pathogen-specific antigens expressed by the vectors. Ad5 vectors can be readily produced, allowing for usage in thousands of clinical trial subjects. This is now coupled with a history of safe clinical use in the vaccine setting. However, traditional Ad5-based vaccines may not be generating optimal antigen-specific immune responses, and generate diminished antigen-specific immune responses when pre-existing Ad5 immunity is present. These limitations have driven initiation of several approaches to improve the efficacy of Ad-based vaccines, and/or allow modified vaccines to overcome pre-existing Ad immunity. These include: generation of chemically modified Ad5 capsids; generation of chimeric Ads; complete replacement of Ad5-based vaccine platforms with alternative (human and non-human origin) Ad serotypes, and Ad5 genome modification approaches that attempt to retain the native Ad5 capsid, while simultaneously improving the efficacy of the platform as well as minimizing the effect of pre-existing Ad immunity. Here we discuss recent advances in- and limitations of each of these approaches, relative to their abilities to overcome pre-existing Ad immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.