Abstract
Quadratic NURBS-based discretizations of the Galerkin method suffer from membrane locking when applied to Kirchhoff–Love shell formulations. Membrane locking causes not only smaller displacements than expected, but also large-amplitude spurious oscillations of the membrane forces. Continuous-assumed-strain (CAS) elements have been recently introduced to remove membrane locking in quadratic NURBS-based discretizations of linear plane curved Kirchhoff rods (Casquero et al., CMAME, 2022). In this work, we generalize CAS elements to vanquish membrane locking in quadratic NURBS-based discretizations of linear Kirchhoff–Love shells. CAS elements bilinearly interpolate the membrane strains at the four corners of each element. Thus, the assumed strains have C0 continuity across element boundaries. To the best of the authors’ knowledge, CAS elements are the first assumed-strain treatment to effectively overcome membrane locking in quadratic NURBS-based discretizations of Kirchhoff–Love shells while satisfying the following important characteristics for computational efficiency: (1) No additional degrees of freedom are added, (2) No additional systems of algebraic equations need to be solved, (3) No matrix multiplications or matrix inversions are needed to obtain the stiffness matrix, and (4) The nonzero pattern of the stiffness matrix is preserved. The benchmark problems show that CAS elements, using either 2 × 2 or 3 × 3 Gauss–Legendre quadrature points per element, are an effective locking treatment since this element type results in more accurate displacements for coarse meshes and excises the spurious oscillations of the membrane forces. The benchmark problems also show that CAS elements outperform state-of-the-art element types based on Lagrange polynomials equipped with either assumed-strain or reduced-integration locking treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.