Abstract

This paper proposes two iterative procedures based on over-parameterisation and optimisation approaches for the identification of nonlinear systems which can be described by Hammerstein-Wiener stochastic models. In this case, the dynamic linear part of the considered system is described by ARMAX mathematical model. The static nonlinear block is approximated by polynomial functions. The first procedure is based on a combination of the prediction error method by using the recursive approximated maximum likelihood estimator (RAML), the singular value decomposition (SVD) approach and the fuzzy techniques in order to estimate the parameters of the considered process. As for the second procedure, it includes an appropriate representation named as generalised orthonormal basis filters (GOBF) in order to reduce the complexity of the considered system. The parametric estimation problem is formulated using the recursive extended least squares (RELS) algorithm incorporated with the singular value decomposition (SVD) and fuzzy techniques in order to segregate the coupled parameters and improve the estimation quality. The validity of the developed approaches is proved by considering a nonlinear hydraulic process simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.