Abstract
BackgroundThe mammary gland is a conserved site of lipoprotein lipase expression across species and lipoprotein lipase attachment to the luminal surface of mammary gland vascular endothelial cells has been implicated in the direction of circulating triglycerides into milk synthesis during lactation.Principal FindingsHere we report generation of transgenic mice harboring a human lipoprotein lipase gene driven by a mammary gland-specific promoter. Lipoprotein lipase levels in transgenic milk was raised to 0.16 mg/ml, corresponding to an activity of 8772.95 mU/ml. High lipoprotein lipase activity led to a significant reduction of triglyceride concentration in milk, but other components were largely unchanged. Normal pups fed with transgenic milk showed inferior growth performances compared to those fed with normal milk.ConclusionOur study suggests a possibility to reduce the triglyceride content of cow milk using transgenic technology.
Highlights
Lipoprotein lipase (LPL) plays a pivotal role in the transportation and energy metabolism of plasma lipoprotein, because it catalyzes the hydrolysis of the triglycerides (TG) circulating in chylomicrons and very low density lipoproteins (VLDL) into glycerol and nonesterified fatty acids (NEFA) [1,2]
Functional LPL is anchored to the luminal surface of the capillary endothelium, where it is synthesized by parenchymal cells of adipose tissue, muscle, heart and the lactating mammary gland (MG)
Generation and Characterization of Transgenic Mice Transgenic mice expressing milk human LPL (hLPL) were generated by inserting an hLPL cDNA into a pBC1 vector controlled by the MG-specific goat b-casein promoter (Figure 1A)
Summary
Lipoprotein lipase (LPL) plays a pivotal role in the transportation and energy metabolism of plasma lipoprotein, because it catalyzes the hydrolysis of the triglycerides (TG) circulating in chylomicrons and very low density lipoproteins (VLDL) into glycerol and nonesterified fatty acids (NEFA) [1,2]. Functional LPL is anchored to the luminal surface of the capillary endothelium, where it is synthesized by parenchymal cells of adipose tissue, muscle, heart and the lactating mammary gland (MG). TG cannot cross the capillary endothelium of most tissues, which suggests that LPL is involved in the uptake of blood TG by capillaries of mammary tissue for milk fat production [6] and that LPL activity levels reflect its capacity to direct TG from the blood [7]. The mammary gland is a conserved site of lipoprotein lipase expression across species and lipoprotein lipase attachment to the luminal surface of mammary gland vascular endothelial cells has been implicated in the direction of circulating triglycerides into milk synthesis during lactation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.