Abstract

BackgroundProlonged pre-insemination anestrus (i.e. delayed puberty) is a major contributing factor for culling up to 30% of the replacement gilts at large breeding farm units in Vojvodina. It is imperative to determine if these gilts are acyclic (prepubertal) or cyclic, but just fail to exhibit behavioural estrus. Recent investigations demonstrate that treatment with equine chorionic gonadotropin (eCG) can increase the diestrous phase duration in sexually mature gilts. Based on these finding, the aim of the present studies was to determine the reproductive status of delayed puberty gilts following injection with eCG.MethodsTwo experiments were conducted on a swine breeding farm in Vojvodina. In Exp. 1, 20 prepubertal (acyclic) gilts, and 120 sexually mature (cyclic) gilts were injected with a single injection of 400 IU eCG + 200 IU human chorionic gonadotropin (hCG) or with 1000 IU eCG (cyclic gilts), at d5, d11 or d17 after spontaneous estrus detection, to determine their ovarian reaction and induced estrus manifestation. In Exp. 2, sixty delayed puberty gilts (estrus not detected until 8 month of age, av. 258 days) were culled from breeding herd and slaughtered to determine their reproductive status based on ovarian anatomical features. The second group of gilts (n = 60) was treated with a single 1000 IU eCG injection to determine their reproductive status, based on the interval between eCG injection to estrus detection and duration. The data were analyzed by descriptive statistics, t-test, analysis of variance and Duncan’s test in the software package Statistics 10th.ResultsOvulations were induced in 90% of acyclic (sexually immature) and, on average, 93.3% of cyclic (sexually mature) gilts after the eCG injection. On average, 4 days after the eCG injection, estrus was detected in 85% of the treated acyclic (sexually immature) gilts and in 95% (19/20) of the cyclic (sexually mature) gilts, treated with eCG on day 17 after spontaneous estrus detection. The interval from eCG to induced estrus detection was prolonged (av. 25 days) in 95% (19/20) of the sexually mature gilts treated with eCG on day 5 and in 90% (18/20) of gilts treated on day 11 after spontaneous estrus detection (Exp. 1). Forty anestrous gilts reached cyclic pubertal ovarian activity. Estrus manifestation was detected in 56 gilts (93.3% of the total 60 treated prolonged anestrous gilts, av. 259 days of age), after a single 1000 IU eCG injection. Thirty-four gilts (60.7% of the total gilts in estrus) with prolonged eCG to estrus interval (av. 24.7 days) were considered spontaneously cyclic (sexually mature), but behaviourally anestrous before treatment. The remaining 22 (39.3% of the total gilts in estrus) were considered truly sexually immature (acyclic) before the treatment or were eCG injected in the late luteal or proestrous phase of spontaneous estrous cycle (Exp. 2).ConclusionsIn 66.7% of the delayed puberty gilts, pre-ovulatory follicles (PoF), corpora hemorrhagica (CH), corpora lutea (CL), or corpora albicantia (CA) were found on the ovaries upon post mortem examination. These gilts were considered as sexually mature before slaughtering. In 60.7% of the delayed puberty gilts, behavioural estrus was detected an average of 24.7 days following eCG injections. These gilts were considered as eCG treated during the luteal phase (diestrus) of the spontaneous estrus cycle. Both findings suggest that delayed puberty gilts actually reached cyclic pubertal ovarian activity (sexual maturity) before culling from the breeding herd.

Highlights

  • Prolonged pre-insemination anestrus is a major contributing factor for culling up to 30% of the replacement gilts at large breeding farm units in Vojvodina

  • In 60.7% of the delayed puberty gilts, behavioural estrus was detected an average of 24.7 days following equine chorionic gonadotropin (eCG) injections

  • The percentage of gilts that ovulated after eCG injection was similar for sexually mature gilts treated on day 5 (95%), 11 (90%) or 17 (95%) when compared to sexually immature, prepubertal gilts (90%)

Read more

Summary

Introduction

Prolonged pre-insemination anestrus (i.e. delayed puberty) is a major contributing factor for culling up to 30% of the replacement gilts at large breeding farm units in Vojvodina. In order to achieve successful weaned swine production, sufficient service-ready gilts must be available in each breeding week for efficient use of gestation and farrowing facilities, and as replacements for sows culled from the breeding herd [1]. This goal is, in practice, quite difficult to achieve, because more gilts are culled from the herd before the first insemination [2]. Recent investigation on large swine breeding farms in Vojvodina demonstrated that 30 to 40% of gilts failed to exhibit behavioural estrus even after 8 months of age These gilts are culled from the breeding herd as delayed puberty gilts, i.e. prolonged preinsemination anestrous gilts [3,4]. Behavioural delayed anestrus may be the result of poor estrus detection by farm personnel [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.