Abstract

In this paper, we study dynamical output feedback {$H_\infty$} control for networked control systems (NCSs) based on two channel event-triggered mechanisms, which are proposed on both sides of the sensor and the controller. The output feedback $H_\infty$ controller is constructed by taking random network-induced delays into consideration without data buffer units. The controlled plant and the output feedback controller are updated immediately by the sampled input and the sampled output, respectively. By using the approaches of time delay and interval decomposition, linear matrix inequality (LMI) based sufficient conditions are presented to guarantee that the closed-loop system satisfies $H_\infty$ performance. Finally, we provide numerical simulations to illustrate effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.