Abstract
This paper reports on the high strength of high-aspect ratio (> 50) hollow, polymer microneedles fabricated out-of-plane using a fairly repeatable fabrication process. Further, these microneedle tips were sharpened by a molding principle, with a simple anisotropic etch of silicon wafer. Also, an enhanced elegant process was explored to incorporate the mounting of the microneedle onto a platform without using any additional material, such that the bore of the microneedle is continuous with the bore of the platform in order to facilitate microfluidic delivery through the hollow needles. The high aspect ratio microneedles undergo failure at the critical load of around 4 N, while the insertion force for such a needle into agar gel, which is a fairly good equivalent of the human skin due to its inherent visco-elastic properties, is 7 mN, which translates into a safety factor (ratio of critical loading force to the maximum applied force) of greater than 500 thus, making it adequately strong for skin penetration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.