Abstract
In this paper, we present an innovative system, coined as DISTROD (a.k.a DISTRibuted Outlier Detector), for detecting outliers, namely abnormal instances or observations, from multiple large distributed databases. DISTROD is able to effectively detect the so-called global outliers from distributed databases that are consistent with those produced by the centralized detection paradigm. DISTROD is equipped with a number of optimization/boosting strategies which empower it to significantly enhance its speed performance and reduce its communication overhead. Experimental evaluation demonstrates the good performance of DISTROD in terms of speed and communication overhead.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.