Abstract
We present two-dimensional maps of emission-line fluxes and kinematics, as well as of the stellar kinematics of the central few kpc of five bright nearby Seyfert galaxies -- Mrk\,6, Mrk\,79, Mrk\,348, Mrk\,607 and Mrk\,1058 -- obtained from observations with the Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (IFU) on the Gemini North Telescope. The data cover the inner 3\farcs5$\times$5\farcs0 -- corresponding to physical scales in the range 0.6$\times$0.9 to 1.5$\times$2.2\,kpc$^2$ -- at a spatial resolution ranging from 110 to 280 pc with a spectral coverage of 4300 -- 7100\,\AA\ and velocity resolution of $\approx$ 90\,km\,s$^{-1}$. The gas excitation is Seyfert like everywhere but show excitation, but show excitation gradients that are correlated with the gas kinematics, reddening and/or the gas density. The gas kinematics show in all cases two components: a rotation one similar to that observed in the stellar velocity field, and an outflow component. In the case of Mrk607, the gas is counter-rotating relative to the stars. Enhanced gas velocity dispersion is observed in association to the outflows according to two patterns: at the locations of the highest outflow velocities along the ionization axis or perpendicularly to it in a strip centered at the nucleus that we attribute to an equatorial outflow. Bipolar outflows are observed in Mrk\,348 and Mrk\,79, while in Mrk\,1058 only the blueshifted part is clearly observed, while in the cases of Mrk\,6 and Mrk\,607 the geometry of the outflow needs further constraints from modeling to be presented in a forthcoming study, where the mass flow rate and powers will also be obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.