Abstract

We resurrect an old definition of the linear measure of a metric continuum in terms of Steiner trees, independently due to Menger (1930) and Choquet (1938). We generalise it to any metric space and provide a proof of a little-known theorem of Choquet that it coincides with the outer linear measure for any connected metric space. As corollaries we obtain simple proofs of Gołąb’s theorem (1928) on the lower semicontinuity of linear measure of continua and a theorem of Bognár (1989) on the linear measure of the closure of a set. We do not use any measure theory apart from the definition of outer linear measure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.